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Abstract: According to the World Health Organization, road accidents are a major cause of death globally, taking the 

lives of around 1.35 million people each year. Given this alarming number, it is more important than ever to use 

cutting-edge AI solutions to address road safety issues. The practical consequences for improving road safety and 

advancing artificial intelligence technologies in the automotive sector are highlighted in this study paper. The "AI-drive 

assist," the suggested model, examines how well an AI-powered driving aid system might increase traffic safety. The 

driving aid technology helps drivers better understand road conditions and promotes the adoption of safer driving 

practices by giving them real-time auditory alerts. In order to effectively extract pertinent information from input 

images, the methodology uses the You Only Look Once (YOLO)v8 model within a ResNet-50 CNN framework. After 

a thorough examination, the system's remarkable 94% precision-recall rate in recognizing different road signs suggests 

that it has the ability to improve driver awareness and encourage adherence to traffic laws. To further increase accuracy 

and resilience, data augmentation techniques are used to diversify the training dataset. The study's conclusions 

highlight the important role AI technologies play in encouraging safer driving habits. All things considered, this study 

shows the real advantages of incorporating AI technologies into driver assistance systems and adds to the continuing 

conversation about enhancing road safety.  
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Introduction 
 

Despite substantial technological developments, 

human error leading to missed road signs remains a key 

problem to road safety. Speeding was the primary cause 

of 71% of accidents in 2019 and was responsible for 

many fatalities and injuries, according to data on traffic 

accidents. Together, lane indiscipline and balance 

violations—such as driving while intoxicated and using a 

cell phone—accounted for 11% of collisions and 14% of 

fatalities. Furthermore, distracted driving is still a 

problem, particularly for younger drivers, and it can be 

dangerous at any time of day. To increase road safety, 
these factors must be addressed with stronger 

enforcement methods (Hugar et al., 2021). 

 

 

 

 

 

 

 

 

 

 

 

Attempts to tackle the problems caused by inattentive  

driving, lane indiscipline, and excessive speeding must be  

supplemented by technological developments in road safety.  

Although there have been significant developments in road  

safety technology, enduring shortcomings in  

conventional automotive systems underscore the pressing  

need for innovation. (Dhawan and others, 2023) There are  

serious safety issues since current technology frequently fail  

to quickly provide drivers with critical road sign  

information. Furthermore, there is still a lack of adequate  

Artificial Intelligence (AI) integration, which makes it  

difficult to immediately understand traffic signals and may  

result in driver errors. These drawbacks are mostly caused  

by insufficient processing power and a slow response to  

changing driving conditions. There are two main restrictions  

on current technology:  

 

1. A deficiency in powerful computer capabilities  

 

2. A limited ability to adapt to rapidly changing driving 

conditions 
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By overcoming the constraints imposed by a lack of 

high-performance computer capabilities and a limited 

ability to adapt to rapidly changing driving scenarios, AI-

drive assist aims to reduce the risks associated with 

missing traffic signals caused by human error. The AI-

drive assist system is a ground-breaking solution that has 

the potential to completely transform road safety in 

answer to the research challenge. This system claims to 

solve significant flaws in current infrastructure by 

smoothly incorporating cutting-edge AI technologies, 
such as the well-known You Only Look Once (YOLO)v8 

idea (Flores-Calero et al., 2024). Known for its quick 

object recognition, the YOLOv8 model provides accurate 

road sign detection, which is especially important when 

driving at high speeds. Additionally, data augmentation 

approaches have been used to balance class distributions 

and provide equal representation across different sign 

types in order to improve the robustness of object 

detection.  

The AI-drive assist system goes beyond simple 

identification with a novel function that transforms 
recognized traffic signs into voice alerts that are sent 

straight to the driver (Manawadu and Wijenayake, 2024). 

This proactive strategy improves overall safety by 

reducing distractions and providing the driver with 

relevant road information. The smooth integration of 

cutting-edge AI technology with real-time feedback 

mechanisms is essential to this system since it guarantees 

that the driver receives crucial information in a timely 

and correct manner.  

The AI-drive assist system has several advantages (Zhu 

and Yan, 2022). It has the flexibility to adjust to quickly 

shifting road conditions in addition to giving drivers 
timely information. By improving the intelligence of the 

transportation system, efficiency is maximized and 

increased safety is guaranteed. In order to improve 

driving safety and convenience, proactive warnings about 

possible risks and changing road conditions can be 

seamlessly integrated into signage that now uses 

sophisticated decision-making algorithms (Wan et al., 

2021).  

The AI-drive assist system will be essential to improving 

road safety and efficiency in the future and has broad 

applications across the whole automotive sector. The 
system's seamless integration of state-of-the-art AI 

technology enables a revolutionary change in traffic 

safety, establishing a standard for the good of society as a 

whole. It creates the framework for a future in which 

technology and transportation work together 

harmoniously, bringing about a new era of road safety by 

purposefully incorporating state-of-the-art AI 

developments. This revolutionary approach demonstrates 

the hidden potential of artificial intelligence (AI) to build 

secretly safer and more efficient roadways, opening the 

door to a future where technology and transportation 

coexist harmoniously for the secret benefit of all.  

 

Review of the Literature  

The 2022 research paper "M-YOLO: Traffic sign detection 

algorithm applicable to complex scenarios" by Liu, Y.; 

Shi, G.; Li, Y.; Zhao, Z., published in Symmetry, delves 

into the topic of traffic sign detection in challenging 

situations. The study focuses on recognizing 11 typical 

traffic signs across Europe using the You Only Look Once 

(YOLO)v3 algorithm. The dataset used in the article was 
obtained from Osijek front-view camera footage. The 

photographs in the collection show a variety of weather 

conditions, including overcast, sunny, rainy, and nighttime 

scenes. The collection consists of 28 film sequences that 

produced 5567 images with 6751 captioned traffic signs. 

Surprisingly, the suggested M-YOLO approach performs 

really well on this enormous dataset. Road safety and 

driver awareness are improved by this study's efficient 

recognition and warning of common European traffic signs 

(Liu et al., 2022).  

Yao et al.'s 2022 research work, "traffic sign detection 
algorithm based on improved YOLOv4-Tiny," presents an 

improved technique for YOLOv4 tiny algorithm-based 

traffic sign recognition. In order to overcome YOLOv4-

Tiny's limitations, the article, which is available on 

Science Direct, uses Receptive Field Blocks (RFB) and an 

Adaptive Feature Pyramid Network (AFPN) to enhance 

feature fusion and extraction. The improved precision, 

recall, map, and competitive speed of these improvements 

in traffic sign detection are evidenced by the analysis of 

the CCTSDB and GTSDB datasets (Yao et al., 2022).  

A real-time traffic sign identification method based on 

YOLOv3 was presented by Zhang et al. (2020). The work, 
which focuses on novel methods for recognizing tiny 

traffic signs and was published in IEEE Access, achieves 

impressive results in terms of precision, recall, and map 

metrics. This study shows the potential of YOLOv3 in this 

particular scenario and aids in the development of real-

time small-sign identification systems (Zhang et al., 2020).  

In their research article "Traffic Sign Detection Algorithm 

Based on Improved YOLOv4," published in 2022, Wu and 

Cao present an improved YOLOv4-based traffic sign 

recognition system. The Journal of Physics: Conference 

series published the paper. The project improves self-
driving cars' recognition of traffic signs by utilizing 

YOLOv4's effective real-time object detection capabilities. 

The remarkable results of the two models that were 

trained—one using the GTSDB dataset and the other using 

a bespoke dataset—proved the efficacy of their 

methodology. The models achieved a Mean Average 

Precision (MAP) of 92% on their own custom dataset and 

94% on the German Traffic Sign Detection Benchmark 

(GTSDB) (Wu and Cao, 2022).  

 

The study "traffic sign detection based on YOLOv3" by 
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Zhang X. focuses on a more effective variant of YOLOv4 

for recognizing traffic signs in autonomous driving cars. 

This method reduces the amount of model parameters by 

substituting MobileNetV2 for YOLOv4's feature 

extraction network in order to maximize model efficiency 

and speed detection. Attention and residual structures are 

added to improve the gradient management and feature 

extraction process. Therefore, a more compact model is 

obtained, which improves detection speed by 58.8% and 

decreases it by 2.5%, while also outperforming YOLOv4 
in terms of overall accuracy (Zhang, 2023).  

Bai et al. (2023) provide two new YOLOv5-based 

models for traffic sign detection in their paper published 

in Axioms. The article helps self-driving cars recognize 

traffic signs by using YOLOv4, a quick and real-time 

object recognition algorithm. With a mean average 

precision (map) of 94% on the GTSDB and 92% on their 

dataset, two models that were trained on both the GTSDB 

and a custom dataset demonstrate remarkable 

performance. This illustrates how well their method 

works to improve autonomous cars' ability to detect 
traffic signs (Bai et al., 2023).  

A lightweight traffic sign detection system based on 

YOLOv4 is presented in the paper "traffic sign detection 

in an unconstrained environment using improved 

YOLOv4" by Saxena et al. (2024). The technique uses 

MobileNetv3 and depth-wise separable convolution to 

increase efficiency and reduce the number of parameters. 

The addition of SPP modules to the feature pyramid and 

improvements to the MobileNetv3 network are further 

developments. In comparison to YOLOv4, the system 

performs better at recognizing traffic signs, according to 

the German Traffic Sign Detection Benchmark 
(GTSDB). The model decreases the number of 

parameters by 197 million, improves processing time by 

25%, and achieves a 1.7% increase in Mean Average 

accuracy (MAP) (Saxena et al., 2024).  

The process of recognizing and categorizing traffic signs 

is the focus of a 2022 study by New York researchers 

that was published in the journal Heliyon. This is 

accomplished by using sophisticated computer vision 

models, particularly Faster R-CNN and YOLOv4. The 

study uses CSPDarknet53 to create a modified model 

based on YOLOv4 for reliable and accurate traffic sign 
detection in order to overcome problems related to small 

signs. Through the use of picture augmentation 

techniques, data preprocessing techniques, and 

consideration of low-light circumstances at night, the 

model achieves excellent accuracy of 80.71% on the 

MTSD dataset and 94.80 on the TT-100 K dataset. Cross-

data testing on the GTSDB and ITSD datasets 

demonstrates the model's adaptability, since it 

accomplishes  

 

higher performance with accuracy rates of 63.64% and 

91.74 percent, respectively, in comparison to other models 

(Youssouf, 2022).  

Comparative Evaluation of YOLOv8 with Cutting-Edge 

Models  

Two cutting-edge models that have greatly improved 

traffic sign detection and each make distinct contributions 

to the field are presented by Bai et al. (2023) in their 

publication in Axioms. Road safety and driver awareness 

are enhanced by M-YOLO's outstanding performance in 

recognizing common European traffic signs in a variety of 
weather situations by utilizing YOLOv3. In the CCTSDB 

and GTSDB datasets, Yao et al. (2022) show that 

YOLOv4-tiny improvement, which combines receptive 

field blocks with an adaptive feature pyramid network, has 

higher precision and recall in traffic sign detection. Similar 

to this, Zhang et al.'s (2024) YOLOv3-based real-time 

detection method shows promise for real-time applications 

by successfully recognizing tiny traffic signals. Wu and 

Cao's improved YOLOv4 method substantially improves 

the capability of self-driving cars by demonstrating great 

precision in real-time object recognition on both standard 
and custom datasets.  

However, Zhang's YOLOv4 optimization with 

MobileNetV2 shows increased accuracy and efficiency in 

unmanned driving cars, offering a more portable yet 

powerful solution. According to Bai et al. (2023), 

YOLOv5-based models show remarkable performance in 

supporting autonomous cars, demonstrating the versatility 

of YOLOv4 for traffic sign recognition. The lightweight 

YOLOv4-based system developed by Saxena et al. (2024) 

using MobileNetv3 and depth-wise separable convolution 

provides improved efficiency and parameter reduction, 

demonstrating better performance than standard YOLOv4 
in traffic sign detection.  

By contrast, the use of YOLOv8 offers a compelling 

improvement in the identification of traffic signs. 

YOLOv8 offers a unified architecture for improved 

accuracy and efficiency while incorporating the best 

features of earlier editions. YOLOv8 streamlines the 

research pipeline and provides scalability and 

generalization capabilities by fusing the flexibility of faster 

R-CNN with the efficiency of YOLOv4. Furthermore, 

YOLOv8 is a viable option for real-time applications 

because to its sophisticated approaches, such as 
CSPDarknet53 and MobileNetV2, which guarantee great 

accuracy even under difficult circumstances. All things 

considered, YOLOv8 is a major development in traffic 

sign identification technology, providing researchers with 

a strong and adaptable instrument to tackle practical issues 

in autonomous driving systems and traffic management 

(Gašparović et al., 2023). 
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Materials and Methods 
The block diagram describing the application's model's 

entire workflow is shown in Fig. 1 below.  

Gathering and Preparing Data  

In the initial stages of system development, we used 

Roboflow's LISA dataset as the main source of traffic 

sign images. For tasks involving the detection and 

identification of traffic signs, the Long-term 

Infrastructure and Short-term Activities (LISA) dataset 

provides an extensive collection of photos. This dataset, 

which covered a wide variety of real-world situations, 

was an invaluable tool for computer vision algorithm 
development and assessment. The LISA dataset, which 

included annotations for a variety of traffic signs, 

including those related to autonomous cars and traffic 

management, was extremely helpful for system 

development and assessment.  

After careful analysis, we discovered a notable 

discrepancy in the dataset's class distribution, 

highlighting the necessity of a deliberate data 

pretreatment approach. Improving the dataset was the 

main goal in order to maximize the effectiveness of 

model training. We used the Albumentations library, a 

potent image augmentation tool, to do this. This approach 
made it easier to apply augmentation techniques meant to 

increase the dataset's diversity and promote better model 

generalization.  

Random cropping to guarantee uniform 250x250 pixel 

dimensions and random brightness and contrast 

modifications with a chance of 0.2 were among the 

augmentation techniques used. Furthermore, a probability 

of 0.5 was used to integrate horizontal flips. The 

methodology aims to artificially expand the dataset's 

richness by purposefully introducing variability through 

these augmentation strategies, which will improve the 
model's capacity to generalize across many contexts 

(Mumuni and Mumuni, 2022).  

Additionally, the dataset was divided into discrete subsets 

to enable efficient system training and assessment. 86% 

of the dataset, or the greatest fraction, was used to train 

the image segmentation model. The validation set was a 

smaller subset (9%), which was used to track model 

performance during training and avoid overfitting. Lastly, 

6% of the sample was set aside as the test set for the last 

assessment of the model's performance following 

training.  

To guarantee the consistency and dependability of the 
dataset, additional improvements were implemented in 

addition to these preprocessing methods. To expedite the 

training process, all photos were reduced to a consistent 

resolution of 416‚ 416 pixels, and auto-orientation was 

used to standardize image orientation. Additionally, 

augmentations were carried out on every training sample, 

adding variables to improve the model's resilience. 

Notably, to increase the model's resistance to slight errors 

in object localization, a tiny quantity of noise—up to 1% 

of pixels—was introduced into bounding boxes.  

Our goal in incorporating these preprocessing methods and 

dataset splits into the methodology was to provide a solid 

basis for the system's subsequent training and assessment.  

Choosing and Training Models  

Several object detection architectures, including faster R- 

CNN, SSD, RetinaNet, EfficientDet, and Mask R-CNN, 

were thoroughly evaluated throughout the critical Model 
Selection and Training phase. Each option's distinct 

benefits and drawbacks were thoroughly considered. 

Faster R- CNN's multi-stage method made it a popular 

model, but it had drawbacks, including slower inference 

than the chosen YOLOv8. Because of its superior speed-

accuracy balance—which is crucial for real-time traffic 

sign detection—YOLOv8 fared better than SSD in real-

time object detection. RetinaNet's ability to handle 

unbalanced classes was not better than YOLOv8's in the 

target domain. However, YOLO—especially the 

YOLOv8s variant—was the best choice, even if algorithms 
like Mask R-CNN and EfficientDet were more effective. 

In order to seamlessly adjust to the real-time demands of 

the AI-drive assist system's traffic sign detection, 

YOLOv8 demonstrated an unmatched speed-accuracy 

balance (Zhang and Zhao, 2022).  

Table 1 demonstrates how the Python programming 

language was used in conjunction with well-known deep 

learning frameworks like TensorFlow and PyTorch to 

compare object detection techniques. According to Lou et 

al. (2023), these frameworks made it easier to construct a 

number of cutting-edge algorithms, such as R-CNN, SSD, 

RetinaNet, EfficientNet, Mask R-CNN, and YOLOv8. As 
part of the implementation process, each framework's pre-

trained models were loaded, and inference was performed 

on the test dataset. OpenCV was used for image processing 

tasks and model validation on this dataset, which included 

a variety of real-world photos. Performance parameters 

such speed (measured in frames per second, or FPS), mean 

average precision (mAP), and inference time (measured in 

milliseconds) were calculated to evaluate the algorithms' 

efficacy. These measures shed light on each algorithm's 

effectiveness and precision in identifying items in the 

pictures (Ahmad et al., 2020).  
The analysis's main model, YOLOv8, was trained on the 

Google Colab platform with the help of the Tesla T4 GPU 

for increased processing capacity. To guarantee that the 

model was optimized for dependable outcomes, the 

training procedure was conducted over 25 epochs. 
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 Table 1: Comparative analysis of algorithms  

Metrics for evaluation 

---------------------------------------- 
Speed Mean Average Inference 

Algorithms (FPS) Precision (mAP) % time 

(ms) 

R-CNN 1-2 25-30 500-600 

SSD 15-20 30-35 50-60 

RetineNet 5-7 35-40 150-200 

EfficientNet 20-25 40-45 40-50 

Mask R-CNN 1-2 30-35 500-600 

YOLOv8 30-40 50-55 25-30 

 

 

Fig. 1: Block diagram of a methodology of AI drive assist 

 

By satisfying the real-time needs of traffic sign detection, 

this version is made to react swiftly to the ever-changing 

road environment. Over the course of 25 training epochs, 
the model adjusts its parameters via gradient descent and 

backpropagation. Images scaled to 640 × 640 pixels were 

used in 25 epochs for the model's training. The detection 

loss function was utilized as the loss function, while the 

Adam optimizer was utilized as the optimizer. Random 

cropping and brightness and contrast tweaks with 

probabilities of 0.2 and 0.5, respectively, were among the 

data augmentation strategies. Backpropagation calculates 

and adjusts parameter gradients to allow for improved 

prediction capabilities, whereas gradient descent 

iteratively optimizes parameters to minimize the 

detection loss function. The effort put into creating a 
highly precise and effective model for the AI-drive assist 

system's real-time traffic sign detection is evident in the 

selection and training stages.  

Combining the Python Program  

The trained YOLOv8 model converges nicely using a 

Python-based architecture because of the adaptable 

OpenCV library. This integration enables real-time 

processing of camera feeds, and the YOLOv8 model 

analyzes each gathered frame in-depth to identify traffic 

signs. The system's responsiveness is further enhanced by 

employing the pyttsx3 package, which generates audio 
alerts that are precisely timed to coincide  

 

in conjunction with the model's findings (Wang et al., 

2023). Important directions and information can be quickly 

and effectively communicated to the driver through this 

auditory response, which is tightly linked to the visible 

traffic signs. By combining these technologies, the Python 

program produces a dynamic and responsive AI-drive 

assist system that raises user awareness and significantly 

enhances driving safety and intelligence (De Pra and 

Fontana, 2020).  

System Function  
The AI-drive assist system initially activates the front 

camera, which is strategically positioned inside the vehicle 

to continuously capture images of the road environment. 

This continuous image collection lays the groundwork for 

real-time monitoring and analysis of the dynamic road 

environment.  

Model Processing for YOLOv8  

The gathered photographs undergo a sophisticated 

processing step using the cutting-edge YOLOv8 model, 

which is renowned for its efficacy in object recognition. 

The capacity of YOLOv8 to evaluate the entire image in a 
single pass is one of its primary differentiators. This 

capability is crucial for prompt reaction in real-time traffic 

situations when driving (Zhang et al., 2023).  

YOLOv8 Object Detection  

Building on its initial processing, YOLOv8 uses the input 

image to generate a grid of cells and assigns each one the 

task of estimating bounding boxes and class probability for 

objects that may be inside its spatial limits. By employing 

predefined forms that vary dynamically during training, 

anchor boxes help the machine improve bounding box 

predictions.  

Class Probabilities and Confidence Scores  
Inside each grid cell, YOLOv8 generates many bounding 

boxes, each of which has a class probability and a 

confidence score. While confidence ratings show how 

certain the model is that an object exists within a certain 

bounding box, class probabilities quantify the likelihood 

that an object will belong to a particular predefined class.  

Insufficient Suppression  

To enhance the forecasts, a critical post-processing method 

known as Non-Maximum Suppression (NMS) is applied. 

Only the most precise and certain predictions remain after 

redundant or low-confidence bounding boxes are gradually 
filtered out in this step. Thanks in large part to NMS, the 

result is not overloaded with overlapping or less confident 

forecasts.  

 

Mechanism for Triggering Alerts  

Following NMS, predictions go through a thresholding 

procedure that assesses whether the traffic signs it 

recognizes are significant enough to warrant attention. A 

voice alarm is activated if the response is affirmative. Its 

purpose is to promptly inform the motorist of the kind of 

traffic sign they have noticed and any pertinent 
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instructions.  

Notification of Drivers  

When the thresholding process yields a favorable result, 

the system promptly alerts the driver. Either the car's 

audio system or a special alert system will ensure that the 

driver has the most recent information on the recognized 

road signs. This open communication significantly 

improves the driver's situational awareness and overall 

road safety.  

Constant Function  
In a continuous cycle, every stage of the operation 

operates without a hitch. The YOLOv8 model continually 

scans, decodes, and classifies traffic signs while the front 

camera continuously takes photographs of the road. The 

user is encouraged to drive defensively and safely by this 

continuously active system architecture, which ensures a 

continuous, real-time awareness of road signs.  

Dealing with an Unbalanced Dataset  

The methodology used a systematic preprocessing 

strategy that primarily relied on data augmentation 

techniques in order to solve the inherent class imbalance 
in the LISA dataset. An essential part of this strategy was 

the Albumentations library, which served as a versatile 

tool to provide much-needed variation, particularly for 

underrepresented classes. This deliberate choice was 

taken with the objective of enhancing the overall 

durability of the dataset and expanding the visibility of 

underrepresented classes. The decision to just use data 

augmentation and exclude alternative techniques 

highlights the commitment to a targeted, effective 

strategy that prioritizes simplicity and effectiveness. The 

current approach demonstrates the high efficacy of data 

augmentation, even though there is potential for further 
iterations to explore more complex strategies to alleviate 

class imbalance (Shorten and Khoshgoftaar, 2019). We 

intentionally draw attention to this approach to provide 

the foundation for proving its versatility and 

effectiveness as the primary tactic for achieving class 

equity in the challenging field of road sign identification. 

The deliberate incorporation of variability through 

augmentation not only enhances model generalization but 

also aligns with the overarching goal of developing a 

reliable and adaptable traffic sign-detecting system.  

 

Assessment and Enhancement  

The rigorous evaluation and optimization phase of the 

AI-drive assist system employs a multifaceted strategy to 

guarantee the model's effectiveness and efficiency 

(Rathod and Wankhade, 2020). Evaluation metrics serve 

as numerical measurements to assess the model's 

performance. F1 score, recall, and precision are a few 

examples of these measurements. While precision 

indicates the accuracy of positive detections, recall 

assesses the model's capacity to identify all relevant 

cases. By balancing recall and precision, the F1 score 

provides a comprehensive understanding of the model's 

overall effectiveness.  

Continuous optimization of the AI-driven help system is 

crucial. This iterative approach leverages insights from 

evaluation metrics by carefully adjusting the model design. 

Additionally, advanced techniques are being researched to 

increase the detection powers. To increase the overall 

accuracy and efficiency of the system, hyperparameters are 

changed. The AI-drive assist system's dynamic 

optimization technique allows it to adapt and endure 

changing traffic situations with unparalleled accuracy and 

reliability.  

Execution  

The system's entire implementation is depicted in the 

architecture diagram that follows, which is found in Figure 

2.  

A complex approach involving both hardware and 

software configurations is needed to integrate the AI-drive 

assist system into a car camera. An advanced camera 

system with real-time video recording capabilities must be 

installed in the vehicle environment. The car's embedded 

computer system must also have the required software 

stack loaded, which consists of the OpenCV library, the 

Python runtime environment, and model dependencies.  

The pre-trained YOLOv8s model for real-time traffic sign 

detection is installed on the vehicle computing unit. The 

OpenCV package is used to process the video in a 

specially designed Python application that interacts with 

the live video stream. This application seamlessly 

integrates the YOLOv8s model to recognize objects in 

incoming video frames.  

After evaluating the predictions, audio alerts are activated 

if pertinent traffic signs are found. The auditory alert 

system gives the driver timely and pertinent feedback 

through the vehicle's audio system (Sahithi et al., 2023).  

Road sign processing is always done while the vehicle is 

moving thanks to the system's never-ending loop operating 

paradigm. A solid AI-drive assist system that works well 

with the car camera system and enhances road safety and 

driver awareness is achieved through rigorous testing 

procedures, system calibration, and potential user interface 

integrations. 
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Fig. 2: Architecture diagram 

 

Furthermore, the AI-drive assist system acknowledges 

the dynamic nature of road situations and places a high 

priority on adaptability and scalability. The YOLOv8 

model is updated and improved upon continuously and 

these updates and improvements are easily included into 

the system, guaranteeing its adaptability to changing 

traffic conditions and new road sign regulations. 

Because of the software architecture's ability to support 

remote updates, the most recent developments in 

computer vision and machine learning may be 

incorporated without the need for human participation. 

Moreover, the AI-drive assist system incorporates 

sophisticated decision-making algorithms, which go beyond 

the recognition of traffic signs. The system can deliver 

anticipatory alerts for potential risks, fluctuating speed limits, 

and changing road conditions by analyzing the contextual 

information collected from the camera feed. This 

comprehensive strategy promotes a symbiotic interaction 

between cutting-edge technology and human intuition on the 

road, improving both road safety and the driving experience 

by making it more comfortable and informed. 

 

Results and Discussion 
The presentation that follows presents the findings and 

shows the application's model's whole workflow.  

The F1 confidence curve is a helpful visual tool for 

binary classification that shows the intricate connection 

between the F1 score and confidence levels. Practitioners 

can see how shifting confidence levels affect the ratio of 

recall to precision by using this graphical representation. 

The curve provides insight into the dynamics of the 

model's performance by displaying the F1-score across a 

range of confidence levels. It assists in determining the 

optimal cutoff point that reduces false positives 

(precision) and false  

 

drawbacks (recall), empowering practitioners to make 

knowledgeable choices about the model's deployment and 

customization for specific use cases. The x-axis of the F1 

confidence curve graph displays the confidence threshold, 

or the minimum level of confidence required for a 

detection to be considered a positive prediction. The y-axis 

in Figure 3 displays the F1 score, which is the harmonic 

mean of recall and precision. The F1-score for every class 

is 0.94 when the confidence level is set to 0.709. As a 

result, the model's predictions are very accurate at a 

specific confidence level, as indicated by the high F1-

score. The curve can be used to identify the confidence 

value that maximizes the model's overall performance; at a 

given confidence threshold, a higher F1-score indicates a 

better balance between precision and recall.  

Furthermore, the F1 confidence curve offers insightful 

information about the trade-off between recall and 

precision, enabling practitioners to make well-informed 

decisions regarding the model's performance in practical 

situations. Stakeholders can adjust the model's threshold to 

satisfy certain needs and maximize its performance for 

various applications by examining this curve.  

By illustrating the link between precision and fluctuating 

confidence thresholds in a classification model, a 

precision-confidence curve provides a visual 

representation that aids in evaluating how varied 

confidence levels impact prediction precision. The model's 

precision for every class is 0.98 when the confidence level 

is set at 1.00. The x-axis represents the confidence 

threshold, and the y-axis displays the precision for each 

class. In this case, the precision for each class is 0.98 when 

the confidence criterion is set to 1.00. As a result, the 

model's predictions are highly accurate at a specific 

confidence level, as indicated by the high precision score. 

A model is more likely to generate fewer false positive 

predictions if it has a higher accuracy score. Therefore, 

selecting a confidence threshold that optimizes the model's 

overall precision can be aided by the precision confidence 

curve graph. A precision-recall curve, a popular metric for 

assessing object identification models' performance, is 

displayed in Figure 4. For a certain object identification 

model, the curve shows the trade-off between accuracy 

(the percentage of true positives among all predicted 

positives) and recall (the percentage of true positives 

among all real positives). In this instance, the curve shows 

how well the model performs across all classes. The mean 
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Average Precision (mAP) determined at an Intersection 

over Union (IoU) threshold of 0.5 is represented by the 

mAP@0.5 number, which is also displayed on the curve. 

This measure offers a single figure that encapsulates the 

model's overall performance across all classes and IoU 

criteria. The figure shows that the model performs well 

overall, achieving a high mAP@0.5 value of 0.968. 

Additionally, the curve indicates that the model is 

capable of accurately identifying the majority of the 

things it detects, as seen by its high precision across all 

recall levels. However, particularly at lower recall levels, 

the precision is higher than the recall. This implies that 

some of the smaller or more challenging-to-detect objects 

shown in Fig. 5 may be missed by the model.  

Overall, the object detection model performs well on the 

provided dataset, as seen by the precision-recall curve in 

Fig. 6. The model can correctly detect the majority of 

items, as evidenced by the high mAP@0.5 score and the 

high precision at all recall levels. The reduced recall at 

lower IoU thresholds, however, indicates that detection of 

smaller or more difficult items may still be improved.  

The mean Average Precision (mAP) for all classes is 

0.968 with a confidence level of 0.5. By integrating the 

precision and recall measures into a single statistic 

known as mean average precision, it is possible to 

determine the optimal confidence threshold at which the 

model operates at its peak performance. The mAP of 

0.968 with a confidence level of 0.5 shows that the model 

does well overall across all classes. This metric is 

commonly used to evaluate the performance of object 

detection models.  

Three loss functions—Box loss (Plot 1), DFL loss (Plot 

2), and classification loss (cl) (Plot 3), which are shown 

in Figs. 7-8—were tracked during the system's training 

process.  

Box Loss (Box_Loss)  

This loss function quantifies the difference between the 

ground-truth and expected bounding boxes. It is used to 

train the model to accurately predict the locations of 

objects in the images. The x-axis displays the quantity of 

training epochs, or iterations. The y-axis displays the box 

loss function's value at each iteration or epoch. By epoch 

20, the box loss curve shows a consistent decline from its 

starting value of about 0.18 to a minimum of about 0.12. 

This decrease suggests that the model successfully 

acquired the ability to precisely pinpoint objects during 

the training phase. Table 2 shows minor changes, mostly 

between epochs 20 and 25.  

Loss of Classification (CLS_Loss)  

This loss function quantifies the discrepancy between the 

predicted class labels and the ground truth. It is used to 

train the model to accurately recognize the objects in the 

images. The x-axis displays the quantity of training 

epochs, or iterations. The y-axis displays the classification 

loss function's value at each iteration or epoch. The 

categorization loss curve exhibits a steady downward 

trend, beginning at approximately 0.32 and progressively 

declining to a minimum.  

value by epoch 20 of roughly 0.25. This ongoing 

development shows that during training, the model's 

capacity to discriminate between various object classes 

steadily increased. Table 3 indicates a little increase 

toward the end, with a value of approximately 0.27 by 

epoch 2. 

 
Fig. 3: F1-confidence curve 

 
Fig. 4: Precision-confidence curve 

Fig. 5: Recall-confidence curve 
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Fig. 6: Precision-recall curve 
 

Fig. 7: Train results 
 

Fig. 8: Validation results 

 Table 2: Training results  

Loss function 
 

Epoch Box loss Box loss 
 

1 1.22 1 1.22 
5 0.87 5 0.87 

10 0.78 10 0.78 
15 0.71 15 0.71 
20 0.63 20 0.63 

25 0.57 25 0.57 

 Table 3: Validation results  

Loss function 

-------------------------------------------------------------- 

Epoch 
Box 

loss 

Classification 

loss 

Distribution focal 

loss 

1 0.93 1.44 0.92 

5 0.79 0.56 0.87 
10 0.72 0.46 0.85 
15 0.68 0.40 0.84 
20 0.65 0.34 0.83 

25 0.63 0.32 0.83 

Distribution Focal Loss (DFL_Loss) 

Table 3 explores the Distribution Focal Loss 

(DFL_loss) is a newly proposed loss function tailored to 
tackle class imbalance issues encountered in object 

detection. It builds upon the foundation laid by Focal 

Loss, incorporating distributional insights to better handle 

varying densities of examples within each class. 

Strategically assigning higher weights to challenging 

instances, enabling the model to focus on learning 

discriminative features crucial for precise object 

detection. This augmentation empowers the model to 

better differentiate between easy and hard examples, 

thereby enhancing its overall performance in detecting 

objects accurately. The DFL loss curve follows a similar 
pattern to the box loss, starting from around 0.35 and 

gradually decreasing to nearly 0.3 by epoch 20. This trend 

suggests that the model successfully addressed class 

imbalance and diverse object shapes during training. 

To enhance the model's performance during training, 

these loss functions are computed and modified at each 

epoch. Keeping an eye on these loss functions can assist 

in pinpointing problem areas and enhance the 

functionality of the model. A model may not be 

functioning effectively in a particular area if one of its loss 

functions is consistently higher than the others. In this 

case, the training configuration or hyperparameters may 

need to be changed to improve the model's performance. 

In Table 2, the box loss values, classification loss 
values, and distribution focal loss values are demonstrated 

as observed during the training of the system for the given 

epoch values. 

The testing process of the system was monitored by 

tracking three loss functions: Box loss (Plot 1), DFL loss 
(Plot 2) and classification loss (cl) (Plot 3), visualized. 

Validation Box Loss (Val/Box_Loss) 
The first graph, labeled 'val/box_loss', shows a rapid 

decrease in loss from the initial epoch to around the fifth 

epoch, followed by a more gradual decline. The loss 

stabilizes after approximately 20 epochs, indicating that 

the model's ability to predict bounding boxes has 

plateaued. This loss function calculates the percentage of 

inaccuracy in estimating bounding box coordinates during 

validation. As a result, the model is encouraged to match 
the projected bounding boxes with the ground truth boxes. 

The number of validation epochs, or iterations, is shown 

on the x-axis. 

Validation Classification Loss (Val/Cls_Loss) 

The second graph, labeled 'val/cls_loss', depicts a 

similar trend with a sharp decline in classification loss 
within the initial epochs, followed by a steady 

convergence to a lower loss value. This suggests that the 

model's  classification  accuracy  is  improving  and 
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stabilizing as training progresses. During the validation 

phase, this loss function measures the mistake in 

guessing the object class for each bounding box. It 

guarantees that the category of the object is correctly 

identified by the model. The number of validation 

epochs, or iterations, is shown on the x-axis. The value 

of the classification loss function at each validation 

iteration or epoch is shown on the y-axis. 

Validation Distribution Focal Loss (Val DFL_Loss) 
The third graph, labeled 'val/dfl_loss', also shows a 

decrease in loss, but the trend is less steep compared to the 

other two. The 'dfl_loss' metric appears to converge slowly, 

suggesting that whatever aspect of the model's performance 

it measures is more challenging to optimize. The number of 

validation epochs, or iterations, is shown on the x-axis. The 

value of the distribution focal loss function at each 

validation iteration or epoch is shown on the y-axis. 

These loss functions are computed and updated 

throughout validation to assess the model's performance 

on hypothetical data. Keeping an eye on these loss 

functions can assist in pinpointing problem areas and 

enhance the functionality of the model. 

In Table 3, the box loss values, classification loss 

values, and distribution focal loss values are demonstrated 

as observed during the validation of the system for the 

given epoch values. 

Precision (B) 
In order to evaluate the model's capacity to prevent 

false positives, precision measures the percentage of true 

positives among all positive predictions for a given class 

(B). In order to compute it, divide the number of True 

Positive detections (TP) by the number of False Positive 

detections (FP), or TP/(TP + FP). The graph indicates an 

initial increase in precision, followed by some 

fluctuations and eventual stabilization, suggesting that the 

model is maintaining a high precision rate after a certain 

number of epochs. 

Recall (B) 
For a given class (B), recall quantifies the percentage 

of real positive detections among all of the bounding 

boxes. It is computed as TP/(TP + FN), where TP is the 

number of true positive detections and FN is the number 

of false negative detections. It is also referred to as 

sensitivity or true positive rate. The recall value increases 

sharply at the beginning and then plateaus, indicating that 

the model is consistently identifying a high proportion of 

the actual positive cases as the training progresses. 

mAP50 (B) 
Mean average precision for a given class (B) at an 

Intersection over Union (IoU) criterion of 0.50. It is an 

indicator of how accurate the model is when simply taking 

into account "easy" detections. The graph shows a rapid 

increase to a high mAP50 score, which then levels off, 

demonstrating that the model achieves a strong performance 

in detecting objects with a moderate IoU threshold. 

mAP50-95 (B) 
The mean Average Precision (mAP) for a specific 

class is calculated by evaluating the precision of the 

model's detections across various Intersections over 

Union (IoU) thresholds, typically ranging from 0.50-0.95. 

This comprehensive analysis provides a detailed 

understanding of how well the model performs at different 

levels of detection precision. 

The trend observed in the mAP curve for Class B is 

similar to that of mAP50, which mainly focuses on a 

single IoU threshold of 0.50. Initially, there's a rapid 

increase in the mAP as the IoU threshold increases, 

followed by a stabilization indicating a consistent 

performance across a range of IoU thresholds. 

However, it's noteworthy that the final mAP values 

obtained for Class B are typically lower than mAP50. 

This difference is expected due to the increased 

difficulty of achieving high precision across a broader 

range of IoU thresholds. 

These metrics, including mAP and class-specific 

mAPs, serve as fundamental tools for assessing the 

efficacy of object detection models. They offer valuable 

insights into the model's ability to accurately identify 

objects of interest under various conditions and are 

essential for making informed decisions about model 

optimization and deployment. 

In Table 4, the precision (B), Recall (B), mAP50 (B), 

and mAP50-95 (B) values are demonstrated as observed 

for the given epoch values. 

Figure 9, the system accurately detects the school sign 

with an accuracy of 0.60. 

Figure 10, the system accurately detects the stop sign 

with an accuracy of 0.88. 

Figures 11-12, the system accurately detects the signal 

ahead sign with an accuracy of 0.59. 

 
 Table 4: Results  

Metric for evaluation epoch 

----------------------------------------------------------------------------- 
 

 Precision(B) Recall(B) mAP50(B) mAP50-95(B) 

1 0.64 0.26 0.32 0.24 

 0.83 0.64 0.77 0.62 

5 0.83 0.92 0.94 0.78 

 0.85 0.94 0.95 0.80 

10 0.94 0.94 0.97 0.82 

 0.94 0.94 0.97 0.83 
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Fig. 9: Metrics for evaluation 
 

Fig. 10: Detection of school road sign 
 

 
Fig. 11: Detection of stop road sign 

 

 
Fig. 12: Detection of signal ahead road sign 

Conclusion 
In this study, the You Only Look Once (YOLO) object 
detection paradigm and text-to-speech synthesis are used 

to successfully create a real-time traffic sign identification 

and interpretation system. The article's objective was to 

create an intelligent system that could recognize various 

traffic signs from a live video stream and provide 

suggestions based on those indications. The system was 

able to identify traffic signs without compromising system 

performance by using the YOLO model to detect objects 

in video frames in real-time. Interpretation of the 

recognized signs was facilitated by mapping the model's 

output to human-readable traffic sign labels. Conditional 
statements were used to dynamically build spoken 

instructions depending on the observed indicators, 

ensuring that the user received relevant and appropriate 

information. The system was made accessible and user-

friendly by integrating text-to-speech synthesis to offer 

aural communication of identified signs.  

Nevertheless, some of the drawbacks include 

misclassifying signs with similar structures, limited 

recognition in different lighting conditions, and the 

inability to recognize signs that are partially obscured. The 

smaller model size and lack of training data under different 

real-world scenarios are thought to be the most likely 
causes of misclassification. In order to capture more detail 

of the road signs, the future scope would be to employ 

larger YOLOv8 models, like YOLOv8 and YOLOv8l, 

instead of YOLOv8 (which has a limit of 11.2 million 

parameters) and better handle congested situations and 

partially obscured items. It is advised to use datasets like 

Tsinghua-Tencent 100 k since they are considerably larger 

and include photos with significant differences in weather 

and illumination. 
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